
AGI black box

Tom Rochette <tom.rochette@coreteks.org>

November 2, 2024 — 951a85c8

0.1 Context
The ultimate goal of a simple AGI program is to be able to receive a set of inputs and to produce the desired
output while having as little input from the user.

0.2 Learned in this study
0.3 Things to explore

• How do you recognize that a problem is time dependent?
• Should every type of input/output be converted into a generic format such as a number or a tensor?

– Given the brain functions “only” on electrical current signals, then it should be possible

1 Overview

2 Supported problems
• X to C (constant) mapping

– (a, b, c, . . . , z) -> alphabet
– (0, 1, 2, . . . , 1000) -> number

• X to X mapping (identity)
– a -> a, b -> b, c -> c, . . . , z -> z
– 0 -> 0, 1 -> 1, 2 -> 2, . . . , 1000 -> 1000

• X to Y mapping
– 0 -> a, 1 -> b, 2 -> c, . . . , 26 -> z
– a -> 0, b -> 1, c -> 2, . . . , z -> 26

• Delayed X to Y mapping (the Y value should be produced with a delay t in the output sequence)
– a -> ., b -> ., c -> a, d -> b, e -> c, . . . , z -> x

• X to Y mapping where the mapping changes over time
– 0 -> 5, 10 -> 25, 0 -> 10, 10 -> 30, 0 -> 12, 10 -> 23

3 Types of inputs/outputs
• Numbers: integer, float
• Strings
• Lists
• Tensors
• Complex data structure

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/951a85c8/agi/agi-black-box/article.md


4 Requirements
• The user must define inputs and outputs that are to be learned in order to reduce the problems’ space
• In some cases, the black box agent should be able to generate optimal solutions given constraints
• The black box should be told the degree of freedom it has to update itself

– In some cases we want the black box function to be very rigid
• It should be able to generate simulated inputs and generate outputs, then verify whether its computed

output is accurate

5 What the black box can do?
• Record every input/output pair that goes through it

6 Example case
Given a set of numbers mapping to another set of numbers (e.g., 1 -> 13, 23 -> 14, 36 -> 67, . . . ), we want
the agent to learn as efficiently as possible this mapping.

The best solution for this is to maintain a map of input -> output, and simply output the known output
when a know input is received. This is known as the lookup table.
In an optimal case, the agent would be able to discover whether a simpler mathematical formulate appears to
generate the output and would replace its lookup table with this function, hence saving a lot of memory at
the expense of doing a bit of calculation.

In order to learn the mapping, the agent must receive sufficiently enough examples to build a complete lookup
table of the inputs that it will expect to receive over its lifetime. This implies that the more complex/large
the lookup table has to be, the more memory the agent needs to have in order to appear accurate. It can
exchange memory at the cost of making more mistakes.

An agent for this simple use case has many strategies it can deploy when receiving unseen inputs. It can
randomly pick any output value it knows. It can pick the most (or least) common output value. It can use
retention policies (similar to cache policies) such as LRU, MRU, LFU, FIFO, LIFO, etc. to determine an
element to return.

7 Data structure case
In the case of the data structure inputs/outputs, then the problem becomes highly complex. Each field in
itself becomes a problem that needs to be solved on its own as well as together with the other fields.
In most programming languages, integers are bound to a certain range, strings can form infinite sequences of
integers

8 See also

9 References
• https://en.wikipedia.org/wiki/Cache_replacement_policies

2


	Context
	Learned in this study
	Things to explore
	Overview
	Supported problems
	Types of inputs/outputs
	Requirements
	What the black box can do?
	Example case
	Data structure case
	See also
	References

