Fukasz Kaiser - Program Search as a Path to Artificial

0.1
0.2
0.3

1
1.1

1.2

General Intelligence (2007)

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77el1b28a

Context
Learned in this study
Things to explore

Overview

1 Intelligence and the Search for Programs

The core of intelligence is neither the knowledge nor the specific method to use it, but the general way
to learn from previous experience
This is not limited to adopting new knowledge, but also includes learning new ways to use what we
know, extending it by reasoning, and even improving learning methods to learn more efficiently
We claim that the informal notion of a method for solving certain tasks can be expressed in mathematical
terms as a Turing machine
To justify this, we use the Church-Turing thesis, the assumption that everything that is computable,
any complex behaviour of a system, can be computed or modelled using only a small set of simple
abstract operations
The thesis of Church and Turing justifies that any informally understood method for solving a problem
can be defined as an algorithm, a Turing machine that takes the instance of the problem as input and
returns the solution
We have modeled problem solving as searching for Turing machines with specified properties
Determining if such a machine exists is of course undecidable and the problem is intractable in general,
but we can make some additional assumptions
— We can assume that we do not only want the machine, but also a proof that it satisfies the formula
and that such a machine with a proof exists
— We will not consider the cases when the problem is not solvable or it cannot be proved that the
solution is correct
Learning amounts to improving the procedure (of the agent), so that after a number of problem instances
have been solved it will solve other similar instances more efficiently
The problem we face with such a theoretical solution is that it would not be usable in practice if
implemented in a direct way
— The time required for it to improve to a level of efficiency that would give any tangible results
would be enormous

2 Theoretical Results

Let us now consider the Turing machines defined in set theory together with the axioms of set theory
as formalized by Zermelo and Frénkel

https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/agi/papers/lukasz-kaiser-program-search-as-a-path-to-artificial-general-intelligence/article.md

1.3

Program search problem: Given a formula ¢(z1, ..., ,) in first order logic on the structure defined above
(TM and ZFC) with free variables 1, ..., x3 denoting Turing machines, find a proof of ¢(my, ...,my) for
some Turing machines my, ..., my.

Fact 1: There exists an algorithm that computes the solution to the program search problem if any
solution exists, so given p(x1, ..., k) it computes myq, ..., my and the proof of ¢(myq,...,my), assuming
that for some machines such a proof exists.

— Proof: Since Turing machines, programs, and proofs are enumerable and it can be determined
algorithmically whether a sequence of formulas forms a proof of a given claim, we can use the
following algorithm to prove this fact:

1. Set length to 1
2. Enumerate all k-tuples my, ..., my of Turing machines shorter than length and all proofs shorter
than length and check if there is any proof among these that proves ¢(my, ..., mg)
3. If the correct machines and proof were found, return them, else increase length by one and
return to 2
— This algorithm is denoted as PSF,

2.1 Program Search in the Standard AI Model

To be able to construct well-acting agents we have to assume something about the environment, or, at
least, something about its probabilistic behaviour
One sensible assumption is that the environment, or at least the probability distribution of events, is
driven by some program (TM)
We want to create an agent that will behave in a worse way than the optimal agent, if one exists, only
for some period of time, and that will later act optimally
Let our agent store the following internal variables:
— a list of interwoven events and actions called history, intially empty
— a program model that models the environment, initially any short one
— a program actor that models the suspected optimal behaviour of the agent, initially any trivial
program
— two numbers max size and max time, initially set to 1
We consider a model of the environment m; to be better than ms if we can prove that there is an agent
that achieves, using my, a better assessment than any agent can achieve using ms
When a new event is encountered
— Append the event to history
— Search for any program smaller than max size that generates history in less time than max time.
Among such environment models, consider only the best ones as defined above, and update model
to be one of the shortest of the best programs
— Search for a proof, shorter than max size, that shows that some program, smaller than max
size and halting on every input, can achieve a better assessment in environment model than the
program actor. In that case, update actor to be one of the shortest of such programs
— Increase max time and max size by one
— Calculate the response of actor to the input event, append the response to history, and output it

e Fact 2: If a Turing machine can describe the behaviour of the environment and there is a provably

optimal agent for this environment, then the presented agent gets assessment smaller than the optimal
one only for some period of time, and behaves optimally afterwards
— If the environment is a program, then after some running time it will generate output that
distinguishes it from any shorter program
— Since we assumed that there is a provably optimal agent, this agent and the proof of its optimality
have some length
— When max size exceeds this length, the variable actor will be set to the optimal program. Therefore,
the agent will start to behave optimally after detecting the correct environment and the necessary
proof

1.4

1.5

1.6

2.2 Self-improving Program Search

We do not intend to search for any program in particular, but to learn efficient procedures to search for
programs of interest
Initialize P = PSP,
Initialize history to an empty sequence
Divide available resources into two parts and run two processes simultaneously
Whenever a new instance of a program search problem is received, append it to history
Main process

— Receives the problem instance, uses P to solve it and returns the solution
Improvement process

1. Append the formula that describes the problem of creating a program search algorithm more

efficient than P with respect to p of the history

2. Use P to find a more efficient program search algorithm as defined by the above formula (?)

3. Update P to a new, more efficient version

4. Repeat, starting from (1) with new P and perhaps an extended history
If we do not want this algorithm to fall in cycles thinking that some program search algorithm P is
better than P, and later, when history changes, deciding the other way, we have to assume that the
definition of efficiency will be monotonic in some way
If we are not able to make such assumptions, it could be useful to separate the history of instances
received from outside from the self-improvement instances, and use two separate program search
algorithms, one for solving the problems and the second to improve program search
Fact 3: Let a program search algorithm @ (our goal, the efficient algorithm) be given and assume that
the efficiency relation is such that there is only a bounded number of algorithms that are provably
more efficient than PSP, and less efficient than @, with respect to any possible histories. Then, for any
sequence of received instances, the presented algorithm will after some number of steps substitute @) for
its internal variable P and therefore become at least as efficient as @

2.3 Discussion of Efficiency Definitions

After gaining experience on a class of instances in the past, we will normally say that an algorithm is
efficient if it solves the instances from this class and other similar instances fast
Two instances are similar if one can be transformed into the other using a few simple transformations,
for example by changing some parameters or shifting them in some way
We can define the level of similarity between two instances as the number of transformations that have
to be applied to get from one instance to the other

— For practical reasons we could assume that if this number is greater than some constant, then the

instances are not similar at all
We can say that one program search algorithm is more efficient than another with respect to a history
if it is faster on all instances in the history and on all similar instances
An alternative definition: The weight of an algorithm A with respect to history H is
U)(A, H) = E{’L similar to some j € H}tzme(Aa Z) : 23imilam’ty(i,H)

— similarity(i, H): the smallest level of similarity between i and any instance from H
— time(A,1): the time it takes A to solve i

3 Convenient Model of Computation

To construct a model, we will concentrate only on two basic operations used in programming, namely
the possibility to define and apply functions and the possibility to create compound data types
Therefore, in our model we will operate on objects that represent some data, e.g. 1, 2, [T, F], and on
functions like +, -, and

To define functions in this model, we write rules telling how one term should change to another, e.g. T
and F - F

In such rules we can use variables, for example, we can write x +0 — x
To avoid terms which do not mean anything, we’ll introduce types, such that, for example, 1 will have
type int and + will have type int, int — int so we will not be allowed to apply it to the boolean value T
The model we present is known as term rewriting with polymorphic types
To define the model, we need the following classes, where arity is always a function that assigns a
natural number to each element of the considered set:

— the infinite enumerate set of type variables, denoted a, 3,y

— the finite set I' of type names with arity, denoted T, R, S
the infinite enumerable set V' of term variables with arity, denoted z, y, z
— the finite set © of constructor names with arity, denoted A, B, C
the finite set ¥ of function names with arity, denoted f, g, h
Types: The set of types is defined inductively as the smallest set G such that

— each type variable a € G

— if T €T with arity n and Ry, ..., R, € T then T(Ry, ..., Ry)

— for any number n and types T, ..., T}, € G and result type R € G the functional type (71, ...,T, —

R)eg

For example:

— T = {booleans, lists, pairs}

* where booleans has arity 0, lists has arity 1 and pairs has arity 2
— The example type E of pairs consisting of a boolean value and a list of any other type can be
represented as

E = pairs(booleans, lists(a)) € G

The set TV ar(T) of type variables occurring in a type T is also defined inductively by TVar(a) = {a},
TVar(T(Ry,....,Ry)) = TVar(Ry) U ..U TVar(R,) and TVar(Ty,..,T, — R) = TVar(Ty) U ... U
TVar(T,)UTVar(R) so TVar(E) = {a}
The usual intuition behind types is to view them as labeled trees, therefore we introduce the notion of
positions in types
The set A of positions is the set of sequences of positive natural numbers
By A € A we will denote the empty sequence or the top (root) position in the type
For a given type T and a position p we either say that p does not exist in T, or define the type at
position p in T (denoted by T'|,) in the following inductive way
— X exists in each type and Ty =T
— p=(n,q) exists in S = T'(Ry, ..., Ry,) if m > n and ¢ exists in R,, and in such case S|, = R,|,
—p = (n,q) exists in S = T1,...,T,,, — R if either m > n and ¢ exists in T;, and in such case
Slp =Tylg, or m+1=n and q exists in R and then S|, = R,

See also

References

	Context
	Learned in this study
	Things to explore
	Overview
	1 Intelligence and the Search for Programs
	2 Theoretical Results
	2.1 Program Search in the Standard AI Model
	2.2 Self-improving Program Search
	2.3 Discussion of Efficiency Definitions
	3 Convenient Model of Computation

	See also
	References

