
Patrice Godefroid - Automating Software Testing
Using Program Analysis (2008)

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77e1b28a

0.1 Context
0.2 Learned in this study
0.3 Things to explore

1 Overview

2 Notes
• Tree main ingredients:

– Automatic
– Scalable
– Check many properties

• Any tool that can automatically check millions of lines of code against hundreds of coding rules is
bound to find on average, say, one bug every thousand lines of code

• Given a program with a set of input parameters, automatically generate a set of input values that,
upon execution, will exercise as many program statements as possible

• 3 tools developed at Microsoft using techniques from
– Static program analysis (symbolic execution)
– Dynamic analysis (testing and runtime instrumentation)
– Model checking (systematic state-space exploration)
– Automated constraint solving

2.1 Static versus dynamic test generation
• Static test generation consists of analyzing a program P statically by reading the program code and

using symbolic execution techniques to simulate abstract program executions to attempt to compute
inputs to drive P along specific execution paths or branches, without ever executing the program

• Cannot reason about constraints outside of the constraint solver’s scope of reasoning (external method
calls, calls to functions such as hash functions which are mathematically designed to prevent such
reasoning)

• Dynamic test generation, consists of
– executing the program P, starting with some given or random inputs
– gathering symbolic constraints on inputs at conditional statements along the execution
– using a constraint solver to infer variants of the previous input to steer the program’s next execution

toward an alternative program branch
• This process is repeated until a specific program statement is reached

• To solve the x == hash(y) problem, we can execute hash(y) with a given value and then assign x to
this value

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/agi/papers/patrice-godefroid-automating-software-testing-using-program-analysis/article.md


2.2 SAGE: White-box fuzz testing for security
2.2.1 SAGE architecture

• SAGE repeatedly performs four main tasks.
– The tester executes the test program on a given input under a runtime checker looking for various

kinds of runtime exceptions, such as hangs and memory access violation
– The coverage collector collects instruction adresses executed during the run; instruction coverage

is used as a heuristic to favor the expansion of executions with high new coverage
– The tracer records a complete instruction-level trace of the run using the iDNA framework
– Lastly, the symbolic executor replays the recorded execution, collects input-related constraints,

and generates new inputs using the constraint solver Disolver

2.3 Pex: Automating unit testing for .NET
• Most fully automatic test-generation tools suffer from a common problem: they don’t know when a test

fails
• A new testing methodology: the parameterized unit test (PUT)
• Pex uses Z3 as its constraint solver

2.4 Yogi: Combining testing and static analysis
• The Yogi tool verifies properties specified by finite-state machines representing invalid program behaviors

3 See also

4 References
• Godefroid, Patrice, et al. “Automating software testing using program analysis.” IEEE software 25.5

(2008): 30-37.

2

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ieeesw2008.pdf

	Context
	Learned in this study
	Things to explore
	Overview
	Notes
	Static versus dynamic test generation
	SAGE: White-box fuzz testing for security
	SAGE architecture

	Pex: Automating unit testing for .NET
	Yogi: Combining testing and static analysis

	See also
	References

