0.1
0.2
0.3

1
2

2.1

Patrice Godefroid - Automating Software Testing
Using Program Analysis (2008)

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77el1b28a

Context
Learned in this study
Things to explore

Overview

Notes

Tree main ingredients:

— Automatic

— Scalable

— Check many properties
Any tool that can automatically check millions of lines of code against hundreds of coding rules is
bound to find on average, say, one bug every thousand lines of code
Given a program with a set of input parameters, automatically generate a set of input values that,
upon execution, will exercise as many program statements as possible
3 tools developed at Microsoft using techniques from

— Static program analysis (symbolic execution)

— Dynamic analysis (testing and runtime instrumentation)

— Model checking (systematic state-space exploration)

— Automated constraint solving

Static versus dynamic test generation

Static test generation consists of analyzing a program P statically by reading the program code and
using symbolic execution techniques to simulate abstract program executions to attempt to compute
inputs to drive P along specific execution paths or branches, without ever executing the program
Cannot reason about constraints outside of the constraint solver’s scope of reasoning (external method
calls, calls to functions such as hash functions which are mathematically designed to prevent such
reasoning)
Dynamic test generation, consists of

— executing the program P, starting with some given or random inputs

— gathering symbolic constraints on inputs at conditional statements along the execution

— using a constraint solver to infer variants of the previous input to steer the program’s next execution

toward an alternative program branch

This process is repeated until a specific program statement is reached

To solve the x == hash(y) problem, we can execute hash(y) with a given value and then assign x to
this value


https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/agi/papers/patrice-godefroid-automating-software-testing-using-program-analysis/article.md

2.2 SAGE: White-box fuzz testing for security
2.2.1 SAGE architecture

e SAGE repeatedly performs four main tasks.

The tester executes the test program on a given input under a runtime checker looking for various
kinds of runtime exceptions, such as hangs and memory access violation

The coverage collector collects instruction adresses executed during the run; instruction coverage
is used as a heuristic to favor the expansion of executions with high new coverage

The tracer records a complete instruction-level trace of the run using the iDNA framework
Lastly, the symbolic executor replays the recorded execution, collects input-related constraints,
and generates new inputs using the constraint solver Disolver

2.3 Pex: Automating unit testing for .NET

Most fully automatic test-generation tools suffer from a common problem: they don’t know when a test

fails

A new testing methodology: the parameterized unit test (PUT)
Pex uses Z3 as its constraint solver

Yogi: Combining testing and static analysis

The Yogi tool verifies properties specified by finite-state machines representing invalid program behaviors

See also

References

Godefroid, Patrice, et al. “Automating software testing using program analysis.” IEEE software 25.5
(2008): 30-37.


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ieeesw2008.pdf

	Context
	Learned in this study
	Things to explore
	Overview
	Notes
	Static versus dynamic test generation
	SAGE: White-box fuzz testing for security
	SAGE architecture

	Pex: Automating unit testing for .NET
	Yogi: Combining testing and static analysis

	See also
	References

