
2017-04-20

Tom Rochette <tom.rochette@coreteks.org>

December 21, 2025 — 77e1b28a

0.1 Context
0.2 Learned in this study
0.3 Things to explore

• How are embeddings computed?

1 Problems faced

2 Overview
• Embeddings are a form of dimensionality reduction, you specify the number of components/features

you want as output
• For instance, given a word, the embedding function E will convert a string S of n characters into a

vector of m dimensions
– One could have created a mapping of words to a given integer, such that Nn → N, where Nn is the

sequence of bytes that represent a word (e.g., Hello → [H, e, l, l, o] → [104, 101, 108, 108, 111]
→ 226) and N is a unique identified of that number sequence (we could also have concatenated
the bytes of the word Hello to make the number 104101108108111, but given that a language has
(generally) a limited set of words, we can make more efficient use of space by using an incremental
list of number)

– The main issue with such approach is that the image value is simply a value that was randomly
assigned to the word and thus no relation can be described using the number alone (other than
saying “word 225 was created before 226, and word 227 was created after word 226”)

– But if you start to increase the number of dimensions, you begin to create dimensions in which a
degree of ordering can begin to exist

– It would also be possible to use a mapping such as Nn → R, which has the benefit of allowing you
to add new words in-between existing words, which is not something you could do with natural
numbers. You would have to displace all existing numbers to insert your new word in-between two
words, and thus, reassign numbers to words that already had a number assigned to them

∗ One issue with mapping to reals is that as you want to insert a value in-between two values,
you will require more and more precision. Given that you decide to use the range [0, 1], as
you add words, the initial assignments will be 0, then 1, and then depending on how “related”
the next word is to the word represented by 0 or 1, it will be closer to one or the other (or
end up being 0.5)

• An embedding is sometimes annotated as X ↪→ Y
• An embedding should generally try to preserve linearity (two points in the initial set should have the

same distance in the embedded set)
– But the process of embedding may lead to loss of information, such as trying to embed a circle

onto a line

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/77e1b28a/machine-learning/daily-log/2017-04-20/article.md


2.1 Handwriting recognition
I worked on converting the IAM XML form into the Pascal VOC format so that I could use YOLO: Real-Time
Object Detection, but more specifically the TensorFlow implementation, darkflow. After converting a few IAM
XML form files, I wanted to start training the model, but it seems that the yolo and yolo-tiny configurations
are too big even for my GPU with 2 GB of RAM and training on the CPU is extremely slow. Below is the
network detail of yolo-tiny, with the last maxpool and last 2 convolutional layers (1024 filters) removed.

Source Train? Layer description Output size
input (?, 416, 416, 3)

Init Yep! conv 3x3p1_1 +bnorm leaky (?, 416, 416, 16)
Load Yep! maxp 2x2p0_2 (?, 208, 208, 16)
Init Yep! conv 3x3p1_1 +bnorm leaky (?, 208, 208, 32)
Load Yep! maxp 2x2p0_2 (?, 104, 104, 32)
Init Yep! conv 3x3p1_1 +bnorm leaky (?, 104, 104, 64)
Load Yep! maxp 2x2p0_2 (?, 52, 52, 64)
Init Yep! conv 3x3p1_1 +bnorm leaky (?, 52, 52, 128)
Load Yep! maxp 2x2p0_2 (?, 26, 26, 128)
Init Yep! conv 3x3p1_1 +bnorm leaky (?, 26, 26, 256)
Load Yep! maxp 2x2p0_2 (?, 13, 13, 256)
Init Yep! conv 3x3p1_1 +bnorm leaky (?, 13, 13, 512)
Init Yep! conv 1x1p0_1 linear (?, 13, 13, 30)

In the process, I had to fix the code that collected the Pascal VOC XML files since it wasn’t working properly
(thus preventing training).

My idea was to use the IAM data set to indicate characters and have darkflow first start by showing me
it can recognize characters in an image or video. Then, my next step would be to have it become able to
recognize the specific characters.

2.1.1 Notes

https://github.com/thtrieu/darkflow/issues/148

If you get the following error Input to reshape is a tensor with X values, but the requested
shape requires a multiple of Y.

The number of filters of your last layer has to be filters = #num * (#classes + 5)

2.1.2 Training darkflow

To train darkflow, you have to do the following

1. Edit labels.txt at the root of the git repository
2. Create and configure your custom network architecture cfg/network.cfg (you can copy yolo.cfg or

yolo-tiny.cfg)
3. Prepare a set of annotations files (which will be in the annotations folder) in the Pascal VOC XML

format, which has this minimal format

Where

• filename is the name of the input image file in your dataset folder
• size.width is the width of the input image
• size.height is the height of the input image
• object.name is the name of an object in the image and the class you want to match with in the

labels.txt file (e.g., dog, cat, person, train, car)

2

http://host.robots.ox.ac.uk/pascal/VOC/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/thtrieu/darkflow


• object.xmin is the minimum x coordinate of an object in the image
• object.ymin is the minimum y coordinate of an object in the image
• object.xmax is the maximum x coordinate of an object in the image
• object.ymax is the maximum y coordinate of an object in the image

An image may have multiple object entries.

4. Call python flow --train --config cfg/network.cfg --dataset path/to/dataset --annotation
path/to/annotations. You may add --gpu 1.0 if your GPU has enough RAM to run the network
on it.

3 See also

4 References
• https://en.wikipedia.org/wiki/Embedding
• https://en.wikipedia.org/wiki/Word_embedding
• http://sebastianruder.com/word-embeddings-1/
• https://github.com/thtrieu/darkflow

3


	Context
	Learned in this study
	Things to explore
	Problems faced
	Overview
	Handwriting recognition
	Notes
	Training darkflow


	See also
	References

